Rounding errors in solving block Hessenberg systems

نویسندگان

  • Urs von Matt
  • G. W. Stewart
چکیده

A rounding error analysis is presented for a divide-and-conquer algorithm to solve linear systems with block Hessenberg matrices. Conditions are derived under which the algorithm computes a stable solution. The algorithm is shown to be stable for block diagonally dominant matrices and for M-matrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementing an Algorithm for Solving Block Hessenberg Systems Implementing an Algorithm for Solving Block Hessenberg Systems

This paper describes the implementation of a recursive descent method for solving block Hessenberg systems. Although the algorithm is conceptually simple, its implementation in C (a natural choice of language given the recursive nature of the algorithm and its data) is nontrivial. Particularly important is the balance between ease of use, computational eeciency, and exibility. This report and t...

متن کامل

Parallel Block Hessenberg Reduction using Algorithms-By-Tiles for Multicore Architectures Revisited LAPACK Working Note #208

The objective of this paper is to extend and redesign the block matrix reduction applied for the family of two-sided factorizations, introduced by Dongarra et al. [9], to the context of multicore architectures using algorithms-by-tiles. In particular, the Block Hessenberg Reduction is very often used as a pre-processing step in solving dense linear algebra problems, such as the standard eigenva...

متن کامل

Parallel Block Hessenberg Reduction using Algorithms-By-Tiles for Multicore Architectures Revisited

The objective of this paper is to extend and redesign the block matrix reduction applied for the family of two-sided factorizations, introduced by Dongarra et al. [9], to the context of multicore architectures using algorithms-by-tiles. In particular, the Block Hessenberg Reduction is very often used as a pre-processing step in solving dense linear algebra problems, such as the standard eigenva...

متن کامل

A QR-decomposition of block tridiagonal matrices generated by the block Lanczos process

For MinRes and SymmLQ it is essential to compute a QR decomposition of a tridiagonal coefficient matrix gained in the Lanczos process. This QR decomposition is constructed by an update scheme applying in every step a single Givens rotation. Using complex Householder reflections we generalize this idea to block tridiagonal matrices that occur in generalizations of MinRes and SymmLQ to block meth...

متن کامل

Parallel Two-Stage Hessenberg Reduction using Tile Algorithms for Multicore Architectures

This paper describes a parallel Hessenberg reduction in the context of multicore architectures using tile algorithms. The Hessenberg reduction is very often used as a pre-processing step in solving dense linear algebra problems, such as the standard eigenvalue problem. Although expensive, orthogonal transformations are accepted techniques and commonly used for this reduction because they guaran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 65  شماره 

صفحات  -

تاریخ انتشار 1996